Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Infect Public Health ; 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20231035

ABSTRACT

Although all walks of life are paying less attention to COVID-19, the spread of COVID-19 has never stopped. As an infectious disease, its transmission speed is closely related to the atmosphere environment, particularly the temperature (T) and PM2.5 concentrations. However, How T and PM2.5 concentrations are related to the spread of SARS-CoV-2 and how much their cumulative lag effect differ across cities is unclear. To identify the characteristics of cumulative lag effects of environmental exposure under city differences, this study used a generalized additive model to investigate the associations between T/PM2.5 concentrations and the daily number of new confirmed COVID-19 cases (NNCC) during the outbreak period in the second half of 2021 in Shaoxing, Shijiazhuang, and Dalian. The results showed that except for PM2.5 concentrations in Shaoxing, the NNCC in the three cities generally increased with the unit increase of T and PM2.5 concentrations. In addition, the cumulative lag effects of T/PM2.5 concentrations on NNCC in the three cities reached a peak at lag 26/25, lag 10/26, and lag 18/13 days, respectively, indicating that the response of NNCC to T and PM2.5 concentrations varies among different regions. Therefore, combining local meteorological and air quality conditions to adopt responsive measures is an important way to prevent and control the spread of SARS-CoV-2.

2.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324333

ABSTRACT

Ventilation performance plays a significant role in distributing contaminants and airborne infections indoors. Thus, poorly ventilated public spaces may be at high risk due to the presence of both infectious and susceptible people. Adapting HVAC ventilation systems to mitigate virus transmission requires considering ventilation rate, airflow patterns, air balancing, occupancy, and feature placement. The study aims to identify poorly ventilated spaces where airborne transmission of pathogens such as SARS-CoV-2 could be critical. This study is focused on evaluating the ventilation performance of the building stock and the safety of using the facilities based on measured indoor CO2. The results revealed the spaces with the potential risk of indoor airborne transmission of COVID-19. The study proposes recommendations for utilising air ventilation systems in different use cases. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2327272

ABSTRACT

The coronavirus disease may spread by airborne aerosols, especially in a poorly ventilated enclosure. Natural ventilation can reduce the transmission of infection. The WHO suggested the minimum ventilation rate of 10 L/s/person in non-residential settings. The objective was to evaluate risk of airborne infection with different settings in natural ventilated classroom. The risk was evaluated by using the modified Wells-Riley equation associated with the variation of contaminant concentration simulated by a multi-zone airflow model. The results provide the guidance of natural ventilation strategy in the classroom to reduce the transmission of airborne infection disease. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325966

ABSTRACT

This study aimed to evaluate the feasibility of using low-cost solutions to monitor and mitigate PM2.5 and PM10 concentrations in nursery and primary schools in Porto (Portugal). Three periods were considered: i) early 2020 (before COVID-19 pandemic), ii) early 2021 (during COVID-19 pandemic, with mitigation measures to prevent SARS-CoV-2 spread);and iii) in the middle of 2021 (additionally using a low-cost portable air cleaner). PM2.5 and PM10 were continuously monitored with a low-cost sensing device for at least two consecutive days in five classrooms. In general, the lowest PM concentrations were observed in the third period. Concentrations reduced up to 63% from the second to the third period. The application of low-cost solutions for monitoring and mitigating PM levels seems to be an effective tool for managing indoor air in schools. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

5.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325618

ABSTRACT

In the era of COVID19, we need to quickly find and fix classrooms that have inadequate ventilation to reduce long-range airborne transmission of diseases. Historically, the limited available data has shown classrooms in the United States to be under ventilated in relation to consensus standard ventilation values that do not consider airborne infectious disease risk. Carbon dioxide (CO2) is a reasonable proxy of emissions from humans. This presentation will discuss the assumptions and uncertainties in using carbon dioxide concentrations as a proxy for ventilation in classrooms. Specifically, the influence of student density and activity level on carbon dioxide concentration will be modeled for a range of student ages and activities. This analysis shows classrooms with high carbon dioxide concentrations (above 2, 000 ppmv) are unlikely to be meeting United States ventilation standards. However, uncertainties mean conclusions cannot be easily made about ventilation rates in classrooms with lower carbon dioxide concentrations. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

6.
Journal of Hydrology and Hydromechanics ; 71(2):156-168, 2023.
Article in English | ProQuest Central | ID: covidwho-2320327

ABSTRACT

The root tuber of Pinellia ternata has been used as a traditional therapeutic herbal medicine. It is reported to impart beneficial attributes in recovering COVID-19 patients. To meet an increasing demand of P. ternata, this study is intended to investigate the effects of biochar on the soil hydrological and agronomic properties of two decomposed soils (i.e., completely decomposed granite (CDG) and lateritic soil) for the growth of P. ternata. The plant was grown in instrumented pots with different biochar application rate (0%, 3% and 5%) for a period of three months. Peanut shell biochar inclusion in both soils resulted in reduction of soil hydraulic conductivity and increase in soil water retention capacity. These alterations in hydrological properties were attributed to measured change in total porosity, biochar intra pore and hydrophilic functional groups. The macro-nutrient (i.e., N, P, K, Ca, and Mg) concentration of both soils increased substantially, while the pH and cation exchange capacity levels in the amended soils were altered to facilitate optimum growth of P. ternata. The tuber biomass in biochar amended CDG at all amendment rate increases by up to 70%. In case of lateritic soil, the tuber biomass increased by 23% at only 5% biochar application rate. All treatments satisfied the minimum succinic acid concentration required as per pharmacopoeia standard index. The lower tuber biomass exhibits a higher succinic acid concentration regardless of the soil type used to grow P. ternata. The biochar improved the yield and quality of P. ternata in both soils.

7.
Front Immunol ; 13: 954093, 2022.
Article in English | MEDLINE | ID: covidwho-2312676

ABSTRACT

The SARS-CoV-2 belongs to the coronavirus family, which also includes common endemic coronaviruses (HCoVs). We hypothesized that immunity to HCoVs would be associated with stronger immunogenicity from SARS-CoV-2 vaccines. The study included samples from the COSRIP observational cohort study of adult paramedics in Canada. Participants provided blood samples, questionnaire data, and results of COVID-19 testing. Samples were tested for anti-spike IgG against SARS-CoV-2, HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43 antigens. We first compared samples from vaccinated and unvaccinated participants, to determine which HCoV antibodies were affected by vaccination. We created scatter plots and performed correlation analysis to estimate the extent of the linear relationship between HCoVs and SARS-CoV-2 anti-spike antibodies. Further, using adjusted log-log multiple regression, we modeled the association between each strain of HCoV and SARS-CoV-2 antibodies. Of 1510 participants (mean age of 39 years), 94 (6.2%) had a history of COVID-19. There were significant differences between vaccinated and unvaccinated participant in anti-spike antibodies to HCoV-HKU1, and HCoV-OC43; however, levels for HCoV-229E and HCoV-NL63 were similar (suggesting that vaccination did not affect these baseline values). Among vaccinated individuals without prior COVID-19 infection, SARS-COV-2 anti-spike IgG demonstrated a weak positive relationship between both HCoV-229E (r = 0.11) and HCoV-NL63 (r = 0.12). From the adjusted log-log multiple regression model, higher HCoV-229E and HCoV-NL63 anti-spike IgG antibodies were associated with increased SARS-COV-2 anti-spike IgG antibodies. Vaccination appears to result in measurable increases in HCoV-HKU1, and HCoV-OC43 IgG levels. Anti-HCoV-229E and HCoV-NL63 antibodies were unaffected by vaccination, and higher levels were associated with significantly higher COVID-19 vaccine-induced SARS-COV-2 antibodies.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Seasons , Vaccination
8.
Building and Environment ; 237, 2023.
Article in English | Scopus | ID: covidwho-2291225

ABSTRACT

School classrooms are often reported as having insufficient ventilation with elevated indoor CO2 concentrations. This paper reports on pre-pandemic field measurements of CO2 concentration levels conducted for an academic year in 10 classrooms from four primary and a secondary school in Victoria, Australia. Measured CO2 concentrations across the 10 classrooms which were operated with a mix of intermittent natural ventilation and air-conditioning for cooling or heating, on average ranged between 657 ppm and 2235 ppm during school hours with median over 1000 ppm in 70% of classrooms. All 10 classrooms in the study exceeded the Australian recommended limit of 850 ppm. Using average peak CO2 concentrations from year-long measurements, estimated ventilation rate (VR) of 4.08 Ls-1 per person show under-performing classrooms where 60% had VRs 35–40% lower than the 10-12 Ls−1 per person Australian recommendation. Estimated VR range of 1.24–2.07 Ls-1 per person using peak maximum CO2 levels were 19–30% lower than ASHRAE recommendation of 6.7 Ls-1 per person. These VRs translate to a range of air change rates on average between 0.52 and 0.88 h−1 ± 0.26–0.59, well below the 6.0 h−1 recommendation for good indoor ventilation by the World Health Organisation in the context of COVID-19 pandemic. Characterisation of ventilation and indoor air quality in current Australian classroom stock is critical for the improvement of classroom design, induction on room operating practices, understanding of the school community on the relevance of building ventilation on school performance and health, and development of appropriate ventilation and indoor air quality guidelines for schools. © 2023 The Authors

9.
Atmosphere ; 14(4):698, 2023.
Article in English | ProQuest Central | ID: covidwho-2297382

ABSTRACT

Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses with radiation or electric charges, filtering of the room air, or supplying ambient air by means of ventilation systems or open windows. For rooms without heating, ventilation, and air conditioning (HVAC) systems, mobile air cleaners are a possibility for filtering out aerosol particles and therefore lowering the probability of indirect infections. The main questions are as follows: (1) How effectively do mobile air cleaners filter the air in a room? (2) What are the parameters that influence this efficiency? (3) Are there room situations that completely prevent the air cleaner from filtering the air? (4) Does the air cleaner flow make the stay in the room uncomfortable? To answer these questions, particle imaging methods were employed. Particle image velocimetry (PIV) was used to determine the flow field in the proximity of the air cleaner inlet and outlet to assess regions of unpleasant air movements. The filtering efficiency was quantified by means of particle image counting as a measure for the particle concentration at multiple locations in the room simultaneously. Moreover, different room occupancies and room geometries were investigated. Our results confirm that mobile air cleaners are suitable devices for reducing the viral load indoors. Elongated room geometries, e.g., hallways, lead to a reduced filtering efficiency, which needs to be compensated by increasing the volume flow rate of the device or by deploying multiple smaller devices. As compared to an empty room, a room occupied with desks, desk separation walls, and people does not change the filtering efficiency significantly, i.e., the change was less than 10%. Finally, the flow induced by the investigated mobile air cleaner does not reach uncomfortable levels, as by defined room comfort standards under these conditions, while at the same time reaching air exchange rates above 6, a value which is recommended for potentially infectious environments.

10.
Atmosphere ; 14(4):716, 2023.
Article in English | ProQuest Central | ID: covidwho-2297048

ABSTRACT

The risk of COVID-19 infection from virulent aerosols is particularly high indoors. This is especially true for classrooms, which often do not have pre-installed ventilation and are occupied by a large number of students at the same time. It has been found that precautionary measures, such as the use of air purifiers (AP), physical distancing, and the wearing of masks, can reduce the risk of infection. To quantify the actual effect of precautions, it is not possible in experimental studies to expose subjects to virulent aerosols. Therefore, in this study, we develop a computational fluid dynamics (CFD) model to evaluate the impact of applying the aforementioned precautions in classrooms on reducing aerosol concentration and potential exposure in the presence of index or infected patients. A CFD-coupled Wells–Riley model is used to quantify the infection probability (IP) in the presence of index patients. Different cases are simulated by varying the occupancy of the room (half/full), the volumetric flow rate of the AP, two different locations of the AP, and the effect of wearing masks. The results suggest that using an AP reduces the spread of virulent aerosols and thereby reduces the risk of infection. However, the risk of the person sitting adjacent to the index patient is only marginally reduced and can be avoided with the half capacity of the class (physical distancing method) or by wearing face masks of high efficiencies.

11.
IEEE Transactions on Industrial Electronics ; : 1-10, 2023.
Article in English | Scopus | ID: covidwho-2275443

ABSTRACT

Ventilation improves indoor air quality and reduces airborne infections. It is particularly important at present because of the COVID-19 pandemic. Commercially available ventilation facilities can only be instantly turned on/off or at a set time with adjustable air volumes (high, middle, and low). However, maintaining the indoor carbon dioxide concentration while reducing the energy consumption of these facilities is challenging. Hence, this study developed clustering algorithms to determine the carbon dioxide concentration limit thus enabling real-time air volume adjustment. These limit values were set using the existing energy recovery ventilation (ERV) controller. In the experiment, dual estimation was adopted, and the constructing building energy models from data were sampled at a low rate to compare that the ventilation facilities are only turned on/off. In addition, switching control is closely related to fuzzy control;that is, fuzzy control can be considered a smooth version of switching control. The experimental results indicated that the limits of 600 and 700 ppm were suitable to effectively control the real-time air volume based on the ERV operation. An ERV-based carbon dioxide concentration limit reduced the energy consumption of ventilation facilities by 11%implications of this study. IEEE

12.
Infektsionnye Bolezni ; 20(3):26-34, 2022.
Article in Russian | EMBASE | ID: covidwho-2271129

ABSTRACT

The clinical efficacy of recombinant IFN-alpha2b in therapy for COVID-19 in children is the basis for studying the parameters of the cytokine production activity of immune system cells and will allow to optimize antiviral therapy regimens. Objective. To study the effect of recombinant IFN-alpha2b on serum IFN-alpha and IFN-gamma concentrations and their synthesis by immune system cells in children with COVID-19. Materials and methods. Peripheral blood samples from 100 patients aged 1 to 17 years (1-7 years - 50 people, 8-17 years - 50 people) with a moderate course of COVID-19 were examined. Patients in the study group received recombinant IFN-alpha2b as part of complex therapy. Patients in the comparison group received antiviral therapy with Arbidol. Multiplex analysis was used to determine serum IFN-alpha and IFN-gamma concentrations and the level of their synthesis by immune system cells. The enzyme-linked immunosorbent assay (ELISA) was used to determine serum concentrations of antibodies to IFN-alpha. Results. Combination therapy with recombinant IFN-alpha2b in children of both age groups led to an increase in serum IFN-alpha concentrations compared to baseline values prior to treatment, in children in the control group and patients with COVID-19 after treatment with Arbidol. There were no significant changes in serum IFN-alpha and IFN-gamma concentrations and their synthesis in intact and PHA-stimulated cells in children of both age groups during treatment with Arbidol. Serum concentrations of antibodies to IFN-alpha during treatment with recombinant IFN-alpha2b did not depend on the age of children and remained within the reference range. Conclusion. A significant increase in serum IFN-alpha concentrations and restoration of its synthesis level induced by PHA to reference values indicate that the use of recombinant interferon medications with their antiviral and immunomodulatory effects should become an integral part of COVID-19 therapy.Copyright © 2022, Dynasty Publishing House. All rights reserved.

13.
6th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2022 ; : 465-470, 2022.
Article in English | Scopus | ID: covidwho-2265620

ABSTRACT

The Internet of Things (IoT) shall be merged firmly and interact with a higher number of altered embedded sensor networks. It provides open access for the subsets of information for humankind's future aspects and on-going pandemic situations. It has changed the way of living wirelessly, with high involvement and COVID-related issues that COVID patients are facing. There is much research going on in the recent domain, like the Internet of Things. Considering the financial-economic growth, there isn't much significance as IoT is growing with industry 5.0 as the latest version. The newly spreading COVID-19 (Coronavirus Disease, 2019) will emphasize the IoT based technologies in a greater impact. It is growing with an increase in productivity. In collaboration with Cloud computing, it shows wireless communication efficiently and makes the COVID-19 eradication in a greater way. The COVID-19 issues which are faced by the COVID patients. Many patients are suffering from inhalation because of lung problems. The second wave attacks mainly on the lungs, where there is a shortage of breathing problems because of less supply of oxygen (insufficient amount of oxygen). The challenges emphasized as proposed are like the shortage of monitoring the on-going process. Readily being active in this pandemic situation, the mentioned areas are from which need to be discussed. The frameworks and services are given the correct data and information for supply of oxygen to the COVID patients to an extent. The Internet of Things also analyzes the data from the user perspective, which will later be executed for making on-demand technology more reliable. The outcome for the COVID-19 has been taken completely to help the on-going COVID patients live, which can be monitored through Oxygen Concentration based on the IoT framework. Finally, this article discusses and mentions all the parameters for COVID patients with complete information based on IoT. © 2022 IEEE.

14.
Green Energy and Technology ; : 1-24, 2023.
Article in English | Scopus | ID: covidwho-2265310

ABSTRACT

The presence of pharmaceutically active compounds (PhACs) in water bodies has been considered an issue of global concern due to their high consumption and release into the environment, especially under pandemic conditions such as current COVID-19 situations. Additionally, the appearance of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) threatens the effectiveness of the pharmaceuticals developed to treat certain diseases. To address this problem, there have been efforts to develop efficient and cost-effective (waste)water treatment methods or to upgrade the existing facilities to regenerate clean water resources. According to the reports available in the literature, the effectiveness of these methods is highly dependent on the applied technology and the type and concentration of the PhACs. The efficiency of these systems can also determine the environmental and ecotoxicological effects expected from the release of these compounds. This chapter aims to summarize and discuss the available literature on the occurrence, environmental concentrations, fate, and possible effects of typical PhACs when introduced into receiving environments. The existing research gaps have also been discussed, and recommendations have been provided for further studies. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

15.
Aerosol Science and Technology ; 57(3):187-199, 2023.
Article in English | ProQuest Central | ID: covidwho-2262305

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought renewed attention to respiratory aerosol and droplet generation. While many studies have robustly quantified aerosol (<10 µm diameter) number and mass exhalation rates, fewer studies have explored larger droplet generation. This study quantifies respiratory droplets (>20 µm diameter) generated by a cohort of 76 adults and children using a water-sensitive paper droplet deposition approach. Unvoiced and voiced activities spanning different levels of loudness, different lengths of sustained phonation, and a specific manner of articulation in isolation were investigated. We find that oral articulation drives >20 µm droplet generation, with breathing generating virtually no droplets and speaking and singing generating on the order of 250 droplets min−1. Lip trilling, which requires extensive oral articulation, generated the most droplets, whereas shouting "Hey,” which requires minimal oral articulation, generated relatively few droplets. Droplet size distributions were all broadly consistent, and no significant differences between the children and adult cohorts were identified. By comparing the aerosol and droplet emissions for the same participants, the full size distribution of respiratory aerosol (0.5–1000 µm) is reported. Although <10 µm aerosol dominates the number concentration, >20 µm droplets dominate the mass concentration. Accurate quantification of aerosol concentrations in the 10–70 μm size range remains very challenging;more robust aerosol analysis approaches are needed to characterize this size range.

16.
20th ACM Conference on Embedded Networked Sensor Systems, SenSys 2022 ; : 806-807, 2022.
Article in English | Scopus | ID: covidwho-2263474

ABSTRACT

Crowdedness sensing of buses is playing an important role in the disease control of COVID-19 and bus resource scheduling. This research analyzes the relationship between carbon dioxide concentration, bus environment and the number of passengers by linear regression. Our prototype system collects the data of bus environment and carbon dioxide concentration to estimate the number of passengers in real time. By collecting the sensing data from a shuttle bus of university campus, we experimentally evaluate the feasibility and sensing performance of the crowdedness estimation model. © 2022 Owner/Author.

17.
Front Pharmacol ; 13: 1037893, 2022.
Article in English | MEDLINE | ID: covidwho-2287293

ABSTRACT

Background: Human serum albumin (HSA) is a commonly used medication for the treatment of sepsis. However, there is no conclusive evidence as to whether different concentrations of HSA are associated with patient prognosis. This study aimed to evaluate the association between different concentrations of HSA and 28-day mortality in patients with sepsis. Methods: The data for this retrospective study were collected from the Medical Information Mart for Intensive Care IV database. Patients with sepsis were divided into two groups according to the concentration of HSA received: 25% and 5% HSA. The primary outcome of this study was the 28-day mortality in patients with sepsis. To ensure the robustness of our findings, we used multivariate Cox regression, propensity score matching, double-robust estimation, and inverse probability weighting models. Results: A total of 76,943 patients were screened, of whom 5,009 were enrolled. 1,258 and 3,751 patients received 25% and 5% HSA, respectively. The 28-day mortality rate was 38.2% (481/1,258) for patients in the 25% HSA group and 8.7% (325/3,751) for patients in the 5% HSA group. After propensity score matching, 1,648 patients were identified. The inverse probability weighting model suggested that 5% HSA received was associated with lower 28-day mortality (hazard ratio [HR]: 0.63, 95% confidence interval [CI]: 0.54-0.73, p < 0.001). Subgroup and sensitivity analysis confirmed the robustness of the results. Conclusion: In patients with sepsis, 5% HSA received may be associated with a lower risk of 28-day mortality than 25% HSA. Further randomized controlled trials are required to confirm this association.

18.
Cureus ; 15(1): e34465, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2250325

ABSTRACT

OBJECTIVE: Emerging evidence indicates that longer SARS-CoV-2 vaccine dosing intervals results in an enhanced immune response. However, the optimal vaccine dosing interval for achieving maximum immunogenicity is unclear. METHODS: This study included samples from adult paramedics in Canada who received two doses of either BNT162b2 or mRNA-1273 vaccines and provided blood samples six months (170 to 190 days) after the first vaccine dose. The main exposure variable was vaccine dosing interval (days), categorized as "short" (first quartile), "moderate" (second quartile), "long" (third quartile), and "longest" interval (fourth quartile). The primary outcome was total spike antibody concentrations, measured using the Elecsys SARS-CoV-2 total antibody assay. Secondary outcomes included spike and receptor-binding domain (RBD) immunoglobulin G (IgG) antibody concentrations, and inhibition of angiotensin-converting enzyme 2 (ACE-2) binding to wild-type spike protein and several different Delta variant spike proteins. We fit a multiple log-linear regression model to investigate the association between vaccine dosing intervals and the antibody concentrations. RESULTS: A total of 564 adult paramedics (mean age 40 years, SD=10) were included. Compared to "short interval" (≤30 days), vaccine dosing intervals of the long (39-73 days) group (ß= 0.31, 95% Confidence interval (CI): 0.10-0.52) and the longest (≥74 days) group (ß = 0.82. 95% CI: 0.36-1.28) were associated with increased spike total antibody concentration. Compared to the short interval, the longest interval quartile was associated with higher spike IgG antibodies, while the long and longest intervals were associated with higher RBD IgG antibody concentrations. Similarly, the longest dosing intervals increased inhibition of ACE-2 binding to viral spike protein. CONCLUSION: Increased mRNA vaccine dosing intervals longer than 38 days result in higher levels of anti-spike antibodies and ACE-2 inhibition when assessed six months after the first COVID-19 vaccine.

19.
Environmental Pollution ; 316, 2023.
Article in English | Scopus | ID: covidwho-2242802

ABSTRACT

This study aimed to evaluate the levels and phenomenology of equivalent black carbon (eBC) at the city center of Augsburg, Germany (01/2018 to 12/2020). Furthermore, the potential health risk of eBC based on equivalent numbers of passively smoked cigarettes (PSC) was also evaluated, with special emphasis on the impact caused by the COVID19 lockdown restriction measures. As it could be expected, peak concentrations of eBC were commonly recorded in morning (06:00–8:00 LT) and night (19:00–22:00 LT) in all seasons, coinciding with traffic rush hours and atmospheric stagnation. The variability of eBC was highly influenced by diurnal variations in traffic and meteorology (air temperature (T), mixing-layer height (MLH), wind speed (WS)) across days and seasons. Furthermore, a marked "weekend effect” was evidenced, with an average eBC decrease of ∼35% due to lower traffic flow. During the COVID19 lockdown period, an average ∼60% reduction of the traffic flow resulted in ∼30% eBC decrease, as the health risks of eBC exposure was markedly reduced during this period. The implementation of a multilinear regression analysis allowed to explain for 53% of the variability in measured eBC, indicating that the several factors (e.g., traffic and meteorology) may contribute simultaneously to this proportion. Overall, this study will provide valuable input to the policy makers to mitigate eBC pollutant and its adverse effect on environment and human health. © 2022 Elsevier Ltd

20.
Science of the Total Environment ; 858, 2023.
Article in English | Scopus | ID: covidwho-2240485

ABSTRACT

Atmospheric black carbon (BC) concentration over a nearly 5 year period (mid-2017–2021) was continuously monitored over a suburban area of Orléans city (France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48 ± 0.46 and 0.50 ± 0.72 μg m−3, respectively, for the year of 2017, 2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum concentration (0.70 ± 0.18 μg m−3) in winter and minimum concentration (0.38 ± 0.04 μg m−3) in summer. We found a different diurnal pattern between cold (winter and fall) and warm (spring and summer) seasons. Further, fossil fuel burning contributed >90 % of atmospheric BC in the summer and biomass burning had a contribution equivalent to that of the fossil fuel in the winter. Significant week days effect on BC concentrations was observed, indicating the important role of local emissions such as car exhaust in BC level at this site. The behavior of atmospheric BC level with COVID-19 lockdown was also analyzed. We found that during the lockdown in warm season (first lockdown: 27 March–10 May 2020 and third lockdown 17 March–3 May 2021) BC concentration were lower than in cold season (second lockdown: 29 October–15 December 2020), which could be mainly related to the BC emission from biomass burning for heating. This study provides a long-term BC measurement database input for air quality and climate models. The analysis of especially weekend and lockdown effect showed implications on future policymaking toward improving local and regional air quality as well. © 2022 Elsevier B.V.

SELECTION OF CITATIONS
SEARCH DETAIL